“目前才是一代产品,价格相对来说还是有些偏高!所以短时间内向用这种材料做输电线缆恐怕有些不现实!”马扬也觉得颇为遗憾,“不过我们的研究人员已经开始了二代产品的研究,我们拥有了完善的理论储备,再加上现在的基础!再过些时间,价格更为低廉的替代产品就可以研发出来了!”
“啧,这可是诺贝尔级别的成就啊!就这样保密的话实在是有些可惜了!”郭振宇从一名科学家的角度出发遗憾的说道。
“这个没什么关系,一来等我们研究出更为廉价的替代品之后,这种材料就可以投入市场了!二来么,吕教授已经得过诺贝尔奖了!一次和两次的区别也就不那么大了!”哎,教练,我也想得诺贝尔奖。
此言一出,刘广明和郭振宇二人同时无语,要是哪位科学家能获得一次诺贝尔奖的提名就足以成为传奇,就更别说获奖了!任何一项能获得提名的成就几乎都是这名科学家一生努力的结晶,而现在吕丘建获奖才过去几年,他就又拿出一项新的获奖成果?这还让不让其他物理学家活了?
沉默半晌,郭振宇首先回过神来,他好奇地问道,“吕教授不是主持太空探索计划的探究么?怎么会去搞超导材料?”
“超导材料在航天上的应用也很广泛啊!利用超导发射火箭架的反重力效果可以大大的节省火箭发射的成本,如果材料的成本降到可以大规模应用的程度我们甚至可以直接用真空超导管道将航天飞船直接送入太空!另外超导卫星比常规卫星的使用寿命更长、功能更加强大......”马扬滔滔不绝的说起了超导技术在航空航天领域的广泛应用。
但是实际上,吕丘建可不是打算用这些材料做超导火箭发射架、超导卫星,而是打算用于等离子体的磁约束上面,约束等离子体的磁场是由真空室外部的线圈产生的,电流一般可以达到几十个千安培,如果是采用常规的铜导体,功率会达到兆瓦级别,相当于火电站的一个发电机组发电功率,可以计算一下一个小时会产生多少的热量,一天会产生多少热量,这些热量全部需要及时地由冷却水带走......这样的成本实在是太高了!
而一旦采用全超导,线圈电阻为0,将线圈的电流增加到指定值之后,理论上就不用再消耗任何能量,维持聚变的时间理论上是可以无限长,这个特性是将来可控核聚变进行商业化应用的所必须的。
就像马扬当初去参观过的iter,他们的约束磁场就打算使用超导磁铁来产生,只不过他们所使用的材料远未达到这种材料的水平。cern的lhc对撞管道也是由超导线圈组成,他们和iter一样都需要用大量的液氮将超导线圈降温到两下一百多摄氏度,这样才能让线圈产生超导现象。
而现在则不同了,羲和计划所使用的材料直接可以在室温条件下实现超导现象,这意味着他们距离可控核聚变的商业化应用又近了一步。